DOI: 10.1002/ejoc.200600546

Gold Catalysis: Observation of a Two-Fold Intermolecular Hydroarylation of Unactivated C-C Triple Bonds

A. Stephen K. Hashmi,*[a] and M. Carmen Blanco^[a]

Keywords: Alkynes / Furans / Gold / Homogeneous catalysis / Hydroarylation

The cationic binuclear catalyst [(Mes₃PAu)₂Cl]BF₄ enables the reaction of 2-methyl- or 2-pentylfuran with phenylacetylene, 1-pentyne or 1-heptyne to yield the products of a two-fold hydroarylation of the alkyne.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

In the field of gold catalysis^[1] several examples of hydroarylation have been reported. After initial reports on the hydroarylation of allenyl ketones and α,β-unsaturated ketones by electron-rich furans^[2] and related arenes,^[3] subsequent work of Arcadi on the hydroarylation of indoles^[4] and 7-azaindoles, [5] of Reetz on the hydroarylation of phenylacetylenes and propiolates, [6] of He on the hydroarylation of propiolates and α,β -unsaturated ketones,^[7] and domino sequences of hydrorarylation and cycloisomerization from our group^[8] investigated that aspect of gold catalysis. All these intermolecular reactions were performed with activated alkynes, only in a few intramolecular cases unactivated alkynes have so far been reported to undergo hydroarylation. [2,9] Until today the intermolecular gold-catalyzed hydroarylation of unactivated alkynes has not been investigated.^[10] Our starting point was the *intermolecular* reaction of furans with alkynes. Recently we have reported that phenylacetylene 1a and 2,5-disubstituted furan 2 delivers

Scheme 1. *Intermolecular* reaction of 2,5-disubstituted furans with *activated* alkynes.

 [a] Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany Fax: +49-711-685-64321 E-Mail: hashmi@hashmi.de both the product of the intermolecular phenol synthesis 3 and the product of the *intermolecular* hydroarylation 4^[9c] (Scheme 1). Here we report our observations when using 2-monosubstituted furans.

Results and Discussion

This investigation bases on the Schmidbaur–Bayler^[11] salt [(Mes₃PAu)₂Cl]BF₄ (5) as the catalyst, which proved to be superior for the intermolecular reactions described in our previous investigation.[9c] The first explorative reactions were conducted with 2-substituted furans 6; in order to change only one parameter at a time, again the activated alkyne 1a was used as reaction partner. Unlike 2, 6 can react with electrophiles at the more reactive 5-position of the furan ring, thus we hoped to get a more effective hydroarylation. Indeed, with a 1:1 stoichiometry of the reactants, a hydroarylation was observed – but even after long reaction times only 10-20% of 8, the product of a twofold addition, was obtained. Having previously experienced the sensitivity of both furans and vinylfurans in reactions with such long reaction times, this was not surprising.^[2,3a,8,9c] The reaction with 2.5 mol-% of catalyst 5 with 1a and two equivalents of 2-methylfuran (6a) or 2-pentylfuran (6b) after a reaction time of seven days at 50 °C delivered significant better yields of products 8a or 8b (Table 1, entries 1 and 2). We could not detect or isolate the intermediate 7, presumably like in related twofold reactions of furans with carbonyl compounds.^[12] the second addition is faster than the first one, which allows only the formation of a small stationary concentration of 7 (Scheme 2).

Then we switched to the *unactivated* alkynes **1b** and **1c**, and even with the latter a hydroarylation was observed. The reaction of **1b** with **6a** gave **8c** (entry 3), **1b** and **6b** yielded **8d** (entry 4), **1c** and **6a** gave **8e** (entry 5), **1c** and **6b** delivered **8f** (entry 6). The reactions were still slow and not unexpectedly slightly lower yields were obtained compared with the

Table 1. Two-fold hydroarylation of alkynes 1 with furans 6 with 2.5 mol-% of catalyst 5.

Entry	1	\mathbb{R}^1	6	\mathbb{R}^2	8	Yield (%)
1	1a	Ph	6a	Me	8a	53
2	1a	Ph	6b	$n-C_5H_{11}$	8b	58
3	1b	n - C_3H_7	6a	Me	8c	39
4	1b	n - C_3H_7	6b	$n-C_5H_{11}$	8d	47
5	1c	n - C_5H_{11}	6a	Me	8e	42
6	1c	n-C ₅ H ₁₁	6b	n-C ₅ H ₁₁	8f	44

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Scheme 2.

activated alkyne; in addition the formation of oligo- and polymeric material was observed. All reactions followed the usual Markovnikov regioselectivity known for gold-catalyzed nucleophilic additions to alkynes.^[13] The MS data clearly support the 2:1 assembly of the two starting materials in the product. The NMR and IR spectra show no alkyne signals and in the NMR spectra no alkene but a new methyl signal and a quaternary alkyl carbon signal is visible. The ¹H NMR are in accordance with the assumption of 2,5-disubstituted furan rings, the typical resonances of the protons at the 5-position of the furan ring have disappeared. Peaks for the other groups are unchanged.

Control experiments (at 50 °C) with the Lewis acid BF₃·Et₂O (1 mol-%) and the Brønsted acid HOTs (1 mol-%) as possible catalysts^[3a,12] gave only black tary residues. The sensitive furan ring decomposes under the acidic conditions. At lower temperatures and with smaller amounts of catalyst no significant reaction can be detected.

Conclusions

The formation of the 2:1 products **8** documents the ability of catalyst **5** to also hydroarylate unactivated alkynes in intermolecular gold-catalyzed reactions. Although the overall yields under these reaction conditions and with this catalyst are not very good, the yield corresponds to up to 76% for each hydroarylation step of the twofold hydroarylation. This is a promising basis for future investigations.

Experimental Section

Synthesis of 8a: To a mixture of 2-methylfuran (205 mg, 2.50 mmol) and phenylacetylene (128 mg, 1.25 mmol) the catalyst **5** (40 mg, 31 μmol, 2.5 mol-%) was added. The reaction mixture was stirred

for 7 d at 50 °C. Then the residue was purified by flash chromatography on silica gel (petroleum ether ether) to yield **8a** (176 mg, 53%) as a yellow oil. $R_{\rm f}$ (petroleum ether/ethyl acetate/dichloromethane, 6:1:0.5) = 0.56. IR (film): $\tilde{v}=2985$, 2921, 2358, 2339, 2038, 1555, 1446, 1218, 1021, 781, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta=1.90$ (d, J=1.0 Hz, 3 H), 2.19 (s, 6 H), 5.79 (d, J=3.0 Hz, 2 H), 5.82 (dq, J=3.0 Hz, 1.0 Hz, 2 H), 7.02 (m, 2 H), 7.15 (m, 1 H), 7.20 (m, 2 H). ¹³C NMR (126 MHz, CDCl₃): $\delta=13.7$ (q, 2C), 25.9 (q), 46.2 (s), 105.8 (d, 2C), 107.7 (d, 2C), 126.5 (d), 127.1 (d, 2C), 128.0 (d, 2C), 145.7 (s), 151.3 (s, 2C), 156.7 (s, 2C). MS (EI): m/z (%): 266 (40) [M⁺], 251 (100), 189 (30), 165 (10), 84 (15), 43 (30). HRMS (70 eV): $C_{18}H_{18}O_2$: calcd. 266.1307; found: 266.1307.

Synthesis of 8b: To a mixture of 2-pentylfuran (300 mg, 2.17 mmol) and phenylacetylene (110 mg, 1.08 mmol) the catalyst 5 (35 mg, 27 mmol, 2.5 mol-%) was added. This reaction mixture was stirred for 7 d at 50 °C. Then the mixture was purified by flash chromatography on silica gel (petroleum ether) to give 8b (239 mg, 58%) as a yellow oil. R_f (petroleum ether) = 0.86. IR (film): \tilde{v} = 2954, 2927, 2858, 1685, 1600, 1554, 1494, 1461, 1376, 1175, 1014, 961, 780, 696 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.80$ (m, 6 H), 1.22 (m, 8 H), 1.52 (m, 4 H), 1.90 (s, 3 H), 2.49 (t, J = 7.5 Hz, 4 H),5.78 (d, J = 3.1 Hz, 2 H), 5.81 (dm, J = 3.1 Hz, 2 H), 7.08 (m, 2 H), 7.22 (m, 1 H), 7.28 (m, 2 H). 13 C NMR (75.5 MHz, CDCl₃): δ = 14.0 (q, 2C), 22.4 (t, 2C), 25.8 (q), 27.8 (t, 2C), 28.0 (t, 2C), 31.3 (t, 2C), 46.3 (s), 104.9 (d, 2C), 107.3 (d, 2C), 126.3 (d), 127.1 (d, 2C), 128.3 (d, 2C), 145.9 (s), 155.7 (s, 2C), 156.5 (s, 2C). MS (EI): m/z (%): 378 (7) [M⁺], 363 (100), 187 (12). HRMS (70 eV): C₂₆H₃₄O₂: calcd. 378.2559; found: 378.2554.

Synthesis of 8c: To a mixture of 2-methylfuran (102 mg, 1.24 mmol) and 1-pentyne (42.2 mg, 620 μmol) catalyst **5** was added (20 mg, 16 μmol, 2.5 mol-%). The reaction mixture was stirred for 7 d at 50 °C. Then the mixture was purified by flash chromatography on silica gel (petroleum ether/diethyl ether/dichloromethane, 20:0.5:1) to provide **8c** (56.2 mg, 39%) as a yellow oil. R_f (petroleum ether/ethyl acetate, 5:1) = 0.62. IR (film): \tilde{v} = 2957, 2360, 1558, 1452, 1378, 1220, 1110, 1021, 941, 780, 631 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 0.81 (t, J = 7.2 Hz, 3 H), 1.11 (m, 2 H), 1.47 (s, 3 H), 1.86 (m, 2 H), 2.26 (d, J = 1.0 Hz, 6 H), 5.77 (dq, J = 3.0 Hz, J = 1.0 Hz, 2 H), 5.80 (d, J = 3.0 Hz, 2 H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 13.6 (q), 14.5 (q, 2C), 17.7 (t), 23.0 (q), 40.9 (s), 41.4 (t), 105.2 (d, 2C), 105.6 (d, 2C), 150.4 (s, 2C), 158.0 (s, 2C). MS (EI): m/z (%): 232 (15) [M⁺], 190 (15), 189 (100), 84 (10), 43 (10). HRMS (70 eV): $C_{15}H_{20}O_2$: calcd. 232.1463; found 232.1464.

Synthesis of 8d: To a mixture of 2-methylfuran (205 mg, 2.50 mmol) and 1-heptyne (120 mg, 1.25 mmol) catalyst 5 (40 mg, 31 µmol, 2.5 mol-%) was added. The reaction mixture was stirred for 7 d at 50 °C. Then the mixture was purified by flash chromatography on silica gel (petroleum ether/diethyl ether/dichloromethane, 5:1:0.5) to deliver 8d (153 mg, 47%) as a yellow oil. $R_{\rm f}$ (petroleum ether/ ethyl acetate/dichloromethane 5:1:0.5) = 0.71. IR (film): \tilde{v} = 2924, 2861, 1611, 1557, 1220, 1020, 850, 645 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.8 Hz, 3 H), 1.28 (m, 6 H), 1.57 (s, 3 H), 1.97 (m, 2 H), 2.27 (d, $J = 1.0 \,\mathrm{Hz}$, 6 H), 5.86 (dq, $J = 3.0 \,\mathrm{Hz}$, 1.0 Hz, 2 H), 5.90 (d, J = 3.0 Hz, 2 H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 13.6 (q, 2C), 14.0 (q), 22.5 (t), 23.0 (q), 24.0 (t), 32.2 (t), 39.0 (t), 40.9 (s), 105.2 (d, 2C), 105.7 (d, 2C), 150.4 (s, 2C), 158.6 (s, 2C). MS (EI): *m/z* (%): 260 (10) [M⁺], 190 (20), 189 (100), 84 (10), 43 (10). HRMS (70 eV): C₁₇H₂₄O₂: calcd. 260.1776; found 260.1777.

Synthesis of 8e: To a mixture of 2-pentylfuran (300 mg, 2.17 mmol) and 1-pentyne (73.6 mg, 1.08 mmol) catalyst **5** (35 mg, 27 μmol,

2.5 mol-%) was added. The reaction mixture was stirred for 7 d at 50 °C. Then the mixture was purified by flash chromatography on silica gel (petroleum ether) to yield **8e** (156 mg, 42%) as a yellow oil. $R_{\rm f}$ (petroleum ether) = 0.34. IR (film): $\bar{\rm v}$ = 2956, 2929, 2860, 1556, 1465, 1378, 1220, 1175, 1111, 1015, 780, 629 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ = 0.90 (m, 9 H), 1.20 (m, 2 H), 1.34 (m, 8 H), 1.56 (s, 3 H), 1.61 (m, 4 H), 1.95 (m, 2 H), 2.58 (t, J = 7.6 Hz, 4 H), 5.86 (d, J = 3.0 Hz, 2 H), 5.89 (d, J = 3.0 Hz, 2 H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.0 (q, 2C), 14.5 (q), 17.8 (t), 22.4 (t, 2C), 23.1 (q), 27.7 (t, 2C), 27.8 (t, 2C), 31.3 (t, 2C), 41.1 (s), 41.7 (t), 104.7 (d, 2C), 104.9 (d, 2C), 154.9 (s, 2C), 157.8 (s, 2C). MS (EI): m/z (%): 344 (10) [M⁺], 301 (100), 187 (10), 84 (10), 28 (10). HRMS (70 eV): $C_{23}H_{36}O_2$: calcd. 344.2715; found: 344.2715.

Synthesis of 8f: To a mixture of 2-pentylfuran (300 mg, 2.17 mmol) and 1-heptyne (104 mg, 1.08 mmol) catalyst **5** (35 mg, 27 μmol, 2.5 mol-%) was added. This reaction mixture was stirred for 7 d at 50 °C. Then the mixture was purified by flash chromatography on silica gel (petroleum ether) to yield **6** (177, 44%) as a yellow oil. $R_{\rm f}$ (petroleum ether) = 0.48. IR (film): \tilde{v} = 2987, 2959, 1557, 1465, 1378, 1112, 1016, 947, 779, 629, 582 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 0.91 (m, 9 H), 1.30 (m, 12 H), 1.56 (s, 3 H), 1.61 (m, 6 H), 1.96 (m, 2 H), 2.58 (t, J = 7.6 Hz, 4 H), 5.86 (d, J = 3.0 Hz, 2 H), 5.88 (d, J = 3.0 Hz, 2 H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 14.0 (q, 2C), 22.4 (q), 23.1 (t), 24.1 (t), 26.4 (q), 27.7 (t, 2C), 27.8 (t, 2C), 28.0 (t, 2C), 31.3 (t, 2C), 32.3 (t), 39.2 (t), 41.1 (s), 104.7 (d, 2C), 105.0 (d, 2C), 154.9 (s, 2C), 157.8 (s, 2C). MS (EI): mlz (%): 372 (5) [M⁺], 316 (20), 301 (100), 187 (10), 43 (10), 18 (10). HRMS (70 eV): $C_{25}H_{40}O_2$: calcd. 372.3028; found: 372.3028.

Acknowledgments

This work was supported by the Fonds der Chemischen Industrie and by the AURICAT EU-RTN (HPRN-CT-2002-00174). Gold salts were kindly donated by Johnson Matthey.

- [2] A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed. 2000, 39, 2285–2288
- [3] a) G. Dyker, E. Muth, A. S. K. Hashmi, L. Ding, Adv. Synth. Catal. 2003, 345, 1247–1252; b) A. S. K. Hashmi, R. Salathé, T. M. Frost, L. Schwarz, J.-H. Choi, Appl. Catal. A 2005, 291, 238–246.
- [4] a) A. Arcadi, G. Bianchi, M. Chiarini, G. D'Anniballe, F. Marinelli, Synlett 2004, 944–950; b) M. Alfonsi, A. Arcadi, M. Aschi, G. Bianchi, F. Marinelli, J. Org. Chem. 2005, 70, 2265–2273
- [5] M. Alfonsi, A. Arcadi, G. Bianchi, F. Marinelli, A. Nardini, Eur. J. Org. Chem. 2006, 2393–2402.
- [6] M. T. Reetz, K. Sommer, Eur. J. Org. Chem. 2003, 68, 3465– 3496.
- [7] a) Z. Shi, C. He, J. Org. Chem. 2004, 69, 3669–3671; b) Z. Li,
 Z. Shi, C. He, J. Organomet. Chem. 2005, 690, 5049–5054.
- [8] A. S. K. Hashmi, L. Grundl, Tetrahedron 2005, 61, 6231–6236.
- [9] a) C. Nevado, A. M. Echavarren, Chem. Eur. J. 2005, 11, 3155–3164; b) C. Ferrer, A. M. Echavarren, Angew. Chem. 2006, 118, 1123–1127; Angew. Chem. Int. Ed. 2006, 45, 1105–1109; c) A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709–713; d) A. S. K. Hashmi, P. Haufe, C. Schmid, A. Rivas Nass, W. Frey, Chem. Eur. J. 2006, 12, 5376–5382; e) A. S. K. Hashmi, J. P. Weyrauch, E. Kurpejovic, T. M. Frost, B. Miehlich, W. Frey, J. W. Bats, Chem. Eur. J. 2006, 12, 5806–5814.
- [10] For related Pd^{II}- and Pt^{II}-catalyzed reactions, which exclusively use acceptor-substituted or phenyl-substituted and thus activated alkynes and thus are closely related to the results reported for gold-catalysts in ref.^[6], see: a) C. Jia, W. Lu, J. Oyamada, T. Kitamura, K. Matsuda, M. Irie, Y. Fujiwara, J. Am. Chem. Soc. 2000, 122, 7252–7263; b) C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura, Y. Fujiwara, Science 2000, 287, 1992–1995.
- [11] A. Bayler, A. Bauer, H. Schmidbaur, Chem. Ber./Recueil 1997, 130, 115–118.
- [12] A. S. K. Hashmi, L. Schwarz, P. Rubenbauer, M. C. Blanco, Adv. Synth. Catal. 2006, 348, 705–708.
- [13] a) R. O. C. Norman, W. J. E. Parr, C. B. Thomas, J. Chem. Soc., Perkin Trans. 1 1976, 1983–1987; b) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. 1998, 110, 1475–1478; Angew. Chem. Int. Ed. 1998, 37, 1415–1418.

Received: June 23, 2006 Published Online: August 22, 2006

a) G. Dyker, Angew. Chem. 2000, 112, 4407–4409; Angew. Chem. Int. Ed. 2000, 39, 4237–4239; b) A. S. K. Hashmi, Gold Bull. 2004, 37, 51–65; c) A. Arcadi, S. Di Giuseppe, Curr. Org. Chem. 2004, 8, 795–812; d) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem. 2005, 3, 387–391.